探秘丨 涡振现象(涡振现象对大桥的影响)
2023年06月14日丨佚名丨分类: 探秘大家好,关于涡振现象很多朋友都还不太明白,不知道是什么意思,那么今天我就来为大家分享一下关于涡振现象对大桥的影响的相关知识,文章篇幅可能较长,还望大家耐心阅读,希望本篇文章对各位有所帮助!
1涡振现象是什么意思?
指的是大跨度桥梁在低风速下出现的一种风致振动现象。从流体的角度来分析,任何非流线型物体,在一定的恒定流速下,都会在物体两侧交替地产生脱离结构物表面的旋涡。相似的有卡门涡街效应。
涡振现象全称为涡激振动现象,指的是大跨度桥梁在低风速下出现的一种风致振动现象。涡振现象是什么意思 从流体的角度来分析,任何非流线型物体在一定的恒定流速下,都会在物体两侧交替地产生脱离结构物表面的旋涡。
如果此时柱体是弹性支撑的,或者柔性管体允许发生弹性变形,那么脉动流体力将引发柱体(管体)的周期性振动,这种规律性的柱状体振动反过来又会改变其尾流的泻涡发放形态。这种流体一结构物相互作用的问题被称作“涡激振动”。
涡振是大跨度桥梁在低风速下出现的一种风致振动现象 。从流体的角度来分析,任何非流线型物体,在一定的恒定流速下,都会在物体两侧交替地产生脱离结构物表面的旋涡。
涡振现象类似于流体力学的卡门涡街现象,流体速度越大,物体振动的频率就越大,例如最近的虎门大桥振动,桥面像波一样起伏,这就是涡振现象。涡激振动是一种带有自激性质的风致限幅振。
2为什么虎门大桥会晃动?
1、据专家分析,水马是涡振诱因,连续设置水马,改变了钢箱梁的气动外形,虎门大桥才会晃动。
2、据公开报道的资料,虎门大桥在维护过程中在桥跨边护栏连续设置水马,改变了原初设计时的气动外形,因此在某种风速下,这个气动效应就会诱发涡振,导致桥面起伏。
3、专家还有种猜测,与大桥“阻尼比”有关。通俗说,“阻尼比”类似病毒抗体,代表其抵抗大桥振动的能力。阻尼比越小,大桥抗震能力就越低。虎门大桥存在25年之久,有可能阻尼比变小,影响到抗涡振能力。
4、经专家组初步判断,虎门大桥悬索桥本次振动主要原因是,由于沿桥跨边护栏连续设置水马,改变了钢箱梁的气动外形,在特定风环境条件下,产生的桥梁涡振现象。专家还有种猜测,与大桥“阻尼比”有关。
5、虎门大桥悬索桥本次振动的主要原因是:沿桥跨边护栏连续设置水马,改变了钢箱梁的气动外形,在特定风环境条件下,产生了桥梁涡振现象。
3原子层沉积技术
1、原子层沉积是通过将气相前驱体脉冲交替地通入反应器并在沉积基体上化学吸附并反应而形成沉积膜的一种方法(技术)。当前驱体达到沉积基体表面,它们会在其表面化学吸附并发生表面反应。
2、因此原子层沉积技术的优势就体现出来,如单原子层逐次沉积,沉积层极均匀的厚度和优异的一致性等就体现出来,而沉积速度慢的问题就不重要了。
3、原子层沉积技术由于可以精确控制膜层,所获得的高度均匀的表面对光子禁带特性有很大影响,为获得高性能光子晶体结构提供了一条灵活有效的途径。
4、原子层沉积(ALD)的自限制性和互补性致使该技术对薄膜的成份和厚度具有出色的控制能力,所制备的薄膜保形性好、纯度高且均匀,因而引起了人们广泛的关注。
5、原子层沉积的表面反应具有自限制性(self-limiting),实际上这种自限制性特征正是原子层沉积技术的基础。不断重复这种自限制反应就形成所需要的薄膜。
4虎门大桥晃动原因是什么?
1、据专家分析,水马是涡振诱因,连续设置水马,改变了钢箱梁的气动外形,虎门大桥才会晃动。
2、虎门大桥悬索桥本次振动的主要原因是:沿桥跨边护栏连续设置水马,改变了钢箱梁的气动外形,在特定风环境条件下,产生了桥梁涡振现象。
3、经专家组初步判断,虎门大桥悬索桥本次振动主要原因是,由于沿桥跨边护栏连续设置水马,改变了钢箱梁的气动外形,在特定风环境条件下,产生的桥梁涡振现象。专家还有种猜测,与大桥“阻尼比”有关。
4、虎门大桥抖动主要原因是由于沿桥跨边护栏连续设置水马,改变了钢箱梁的气动外形,在特定风环境条件下,产生的桥梁涡振现象。另外,也有专家猜测也可能与大桥“阻尼比”有关。
5、是什么原因令虎门大桥异常抖动:经专家组初步判断,虎门大桥悬索桥本次振动主要原因是,由于沿桥跨边护栏连续设置水马,改变了钢箱梁的气动外形,在特定风环境条件下,产生的桥梁涡振现象。
6、据了解,专家组初步判断,虎门大桥悬索桥本次振动的主要原因是,沿桥跨边护栏连续设置水马,改变了钢箱梁的气动外形,在特定风环境条件下,产生了桥梁涡振现象。
END,本文到此结束,如果可以帮助到大家,还望关注本站哦!
版权声明:本站文章如无特别注明均为原创,转载请以超链接形式注明转自财广经验。